Ekuation

Motion Calculator

This Motion Calculator helps you solve problems involving motion, including calculations for velocity, acceleration, distance, and time. It supports both uniform motion and uniformly accelerated motion, making it perfect for physics students and professionals.

v = v₀ + a × t

Final velocity equals initial velocity plus acceleration multiplied by time

m/s

Starting velocity of the object

m/s²

Rate of change of velocity

s

Duration of motion

Velocity Calculator
Calculate velocity based on kinematic equations of motion
Motion Calculator Documentation
Learn how to use the motion calculator and understand the physics behind it

About the Motion Calculator

The Motion Calculator is a tool that helps you calculate various parameters related to kinematics - the branch of physics dealing with the motion of objects without considering the forces that cause the motion.


How to Use This Calculator

Follow these steps to use the Motion Calculator:

  1. Select Calculation Type: Choose what parameter you want to calculate (velocity, acceleration, distance, or time).
  2. Choose Unit System: Select either metric (m, m/s, m/s²) or imperial (ft, ft/s, ft/s²) units.
  3. Enter Known Values: Fill in the required values for your chosen calculation type.
  4. View Results: The calculated result will appear in the results section.

You can use the hint buttons below each input field to quickly enter common values or switch between calculation types to solve different motion problems.


Understanding Kinematics

Kinematics is the branch of mechanics that describes the motion of objects without considering the forces that cause the motion. The four key parameters in kinematics are:

  • Velocity (v): The rate of change of position with respect to time, measured in meters per second (m/s) or feet per second (ft/s).
  • Acceleration (a): The rate of change of velocity with respect to time, measured in meters per second squared (m/s²) or feet per second squared (ft/s²).
  • Distance (d): The total length of the path traveled, measured in meters (m) or feet (ft).
  • Time (t): The duration of motion, measured in seconds (s).

These parameters are related by the kinematic equations used in this calculator. Understanding these relationships allows us to determine unknown parameters when others are known.


Kinematic Equations

The calculator uses the following standard kinematic equations for objects moving with constant acceleration:

Final Velocity Equation:

v=v0+atv = v_0 + a t

Where v is final velocity, v₀ (v_0) is initial velocity, a is acceleration, and t is time

Acceleration Equation:

a=vv0ta = \frac{v - v_0}{t}

Where a is acceleration, v is final velocity, v₀ (v_0) is initial velocity, and t is time

Distance Equation:

d=v0t+12at2d = v_0 t + \frac{1}{2} a t^2

Where d is distance, v₀ (v_0) is initial velocity, a is acceleration, and t is time

Time Equation:

t=vv0at = \frac{v - v_0}{a}

Where t is time, v is final velocity, v₀ (v_0) is initial velocity, and a is acceleration

Time-Independent Equation:

v2=v02+2adv^2 = v_0^2 + 2 a d

Relates final velocity, initial velocity, acceleration, and distance without time.

These equations form the foundation of kinematics and are valid for objects moving with constant acceleration in a straight line.


Calculation Types Explained

The calculator offers four different calculation types, each solving for a different parameter:

1. Velocity Calculator

Calculates the final velocity of an object given its initial velocity, acceleration, and time. This is useful for determining how fast an object is moving after a certain period of acceleration.

Required inputs: Initial velocity, acceleration, and time

2. Acceleration Calculator

Determines the acceleration of an object based on its initial velocity, final velocity, and the time taken. This helps in understanding how quickly an object's velocity is changing.

Required inputs: Initial velocity, final velocity, and time

3. Distance Calculator

Calculates the distance traveled by an object given its initial velocity, acceleration, and time. This is useful for determining how far an object has moved during a period of acceleration.

Required inputs: Initial velocity, acceleration, and time

4. Time Calculator

Computes the time required for an object to change from one velocity to another, given a constant acceleration. This helps in determining how long a particular motion will take.

Required inputs: Initial velocity, final velocity, and acceleration


Unit Systems and Conversions

The calculator supports both metric and imperial unit systems, and automatically converts values when you switch between systems:

ParameterMetric UnitsImperial UnitsConversion Factor
Distancemeters (m)feet (ft)1 m = 3.28084 ft
Velocitymeters per second (m/s)feet per second (ft/s)1 m/s = 3.28084 ft/s
Accelerationmeters per second squared (m/s²)feet per second squared (ft/s²)1 m/s² = 3.28084 ft/s²
Timeseconds (s)seconds (s)No conversion needed

Common Physics Values

These are some common physics constants and values that might be useful when performing motion calculations:

ConstantValueDescription
Gravitational Acceleration (Earth)9.8 m/s² (32.2 ft/s²)The acceleration due to gravity on Earth's surface
Speed of Light in Vacuum299,792,458 m/sThe ultimate speed limit in the universe
Speed of Sound in Air343 m/s (1,125 ft/s)The speed at which sound waves travel through air at sea level at 20°C
Terminal Velocity (Human)~53 m/s (~174 ft/s)Approximate speed a human reaches in freefall (spread-eagle)

Tips and Considerations

  • Constant Acceleration: These equations assume constant acceleration. If acceleration changes, more advanced calculus-based methods are needed.
  • Direction: Be mindful of direction. Choose a positive direction (e.g., right or up) and use negative signs for quantities in the opposite direction (e.g., deceleration or velocity downward).
  • Units: Ensure all entered values use consistent units within the chosen system (metric or imperial).
  • Gravity: For vertical motion problems near Earth's surface (ignoring air resistance), acceleration (a) is typically -9.8 m/s² or -32.2 ft/s² if the upward direction is chosen as positive.
  • Starting from Rest: If an object starts from rest, its initial velocity (v₀) is 0.

Command Palette

Search for a command to run...