Ekuation

Absolute Value Calculator

A simple and precise absolute value calculator that helps you find the absolute value (magnitude) of any number or expression. The absolute value of a number represents its distance from zero on the number line, regardless of whether it is positive or negative.

Enter any positive or negative number

, , , ,
Calculate Absolute Value
Enter a number or expression to calculate its absolute value.

How to Use This Calculator

Using the Absolute Value Calculator is straightforward.

  1. Enter a Number or Expression: In the input field provided on the calculator interface, type in the number or mathematical expression for which you want to find the absolute value.
    • You can enter positive numbers (e.g., 5, 12.7).
    • You can enter negative numbers (e.g., -10, -0.5).
    • The calculator may also support simple expressions (e.g., 5 - 8, -2 * 3), depending on its specific implementation. Refer to the calculator's interface for any limitations on expression complexity.
  2. View the Result: The calculator will automatically compute and display the absolute value of the entered number or expression. The result will always be a non-negative number.

For example, if you enter -15, the calculator will display 15. If you enter 7, it will display 7.


What is Absolute Value?

The absolute value of a number is its distance from zero on a number line, regardless of whether the number is positive or negative. It's denoted by vertical bars on both sides of a number or expression, like this: x|x|.

The absolute value function returns the positive version of any number. You can think of it as removing the negative sign from negative numbers, while leaving positive numbers unchanged.


Formal Definition & Key Properties

Formal Definition

The absolute value of a real number xx is defined as:

x={x,if x0x,if x<0|x| = \begin{cases} x, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases}

For example, 5=5|5| = 5 and 5=(5)=5|-5| = -(-5) = 5.

Key Properties of Absolute Value

  • x0|x| \geq 0 for any real number xx
  • x=0|x| = 0 if and only if x=0x = 0
  • x=x|-x| = |x| for any real number xx
  • xy=xy|x \cdot y| = |x| \cdot |y| for any real numbers xxand yy
  • xy=xy\left|\frac{x}{y}\right| = \frac{|x|}{|y|} for any real numbersxx and y0y \neq 0
  • x+yx+y|x + y| \leq |x| + |y| (Triangle Inequality)


Examples of Absolute Value

Basic Examples

  • 5=5|5| = 5
  • 7=7|-7| = 7
  • 0=0|0| = 0
  • 3.14=3.14|3.14| = 3.14
  • 2.5=2.5|-2.5| = 2.5

Expressions

  • x3|x - 3| represents the distance between xx and33 on a number line
  • 2x+5|2x + 5| is the absolute value of the expression2x+52x + 5
  • x24|x^2 - 4| is always non-negative regardless of the value ofxx

Real-World Applications

Distance Calculation

Absolute value is commonly used to calculate distance. For example, the distance between two pointsaa and bb on a number line isab|a - b|.

Error Measurements

In statistics and data analysis, absolute value is used to calculate absolute error:actualmeasured|actual - measured|.

Financial Calculations

Absolute value helps analyze financial gains or losses without considering whether they are positive or negative, focusing only on magnitude.

Scientific Measurements

When scientists need to measure deviation from a standard or expected value, absolute value provides the magnitude of the deviation regardless of direction.


Solving Absolute Value Equations

An absolute value equation is an equation that contains an absolute value expression. To solve such equations, we need to consider both possible cases:

For an equation of the form expression=a|expression| = a (wherea0a \geq 0):

We need to solve two separate equations if a>0a > 0:

expression=a or expression=aexpression = a \text{ or } expression = -a

If a=0a = 0, then we solve expression=0expression = 0.

Example:

To solve x3=4|x - 3| = 4:

  • Case 1: x3=4x - 3 = 4, so x=7x = 7
  • Case 2: x3=4x - 3 = -4, so x=1x = -1

Therefore, the solutions are x=7x = 7 and x=1x = -1.


Absolute Value Inequalities

Absolute value can also be used in inequalities:

For expression<a|expression| < a (where a>0a > 0):

a<expression<a-a < expression < a

Example:

x3<2|x - 3| < 2 means 2<x3<2-2 < x - 3 < 2

So 1<x<51 < x < 5

For expression>a|expression| > a (where a0a \geq 0):

expression<a or expression>aexpression < -a \text{ or } expression > a

(If a=0a = 0, then expression>0|expression| > 0 means expression0expression \neq 0.)

Example:

x3>2|x - 3| > 2 means x3<2x - 3 < -2 orx3>2x - 3 > 2

So x<1x < 1 or x>5x > 5


Tips for Working with Absolute Value

Helpful Pointers

  • Remember that absolute value is always non-negative.
  • When solving equations or inequalities, consider the cases based on the definition: what makes the expression inside the absolute value positive, and what makes it negative.
  • The expression xa|x - a| can be interpreted as the distance between xx and aa on a number line. This can be a helpful visual.
  • Be careful with absolute value inequalities—they often result in compound inequalities (AND statements) or disjoint solution sets (OR statements).
  • If expression=negative_number|expression| = negative\_number, there is no solution, as absolute value cannot be negative.
  • If expression<negative_number|expression| < negative\_number, there is no solution.
  • If expression<0|expression| < 0, there is no solution.
  • If expression0|expression| \leq 0, this implies expression=0expression = 0.


Important Considerations

Understanding the scope and limitations of this calculator.

  • Mathematical Focus: This documentation primarily covers the mathematical concept of absolute value. The calculator itself is a tool to compute this value.
  • Expression Complexity: While the concept of absolute value applies to complex expressions, this specific calculator might have limitations on the complexity of expressions it can parse. For very complex algebraic expressions involving absolute values, you might need more advanced symbolic math software.
  • Numerical Precision: For calculations involving very large numbers or numbers with many decimal places, be aware of potential numerical precision limits inherent in computer-based calculations.
  • Not for Financial Advice: While absolute value has applications in finance (e.g., magnitude of change), this calculator is a mathematical tool and does not provide financial advice.

Tool Purpose

This calculator is designed for educational and practical purposes to quickly find the absolute value of numbers or simple expressions. For solving complex absolute value equations or inequalities, or for applications in advanced mathematics, consult appropriate textbooks or specialized software.

Command Palette

Search for a command to run...